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Abstract 

This paper examines the impacts of a rapid transit network expansion on travel flows in 

São Paulo over 10 years. Using spatial gravity-based models with granular data, it 

evaluates access improvements to BRT, train, and subway stations through the concept 

of spatial catchment area. Rail modes had a -3.9% travel time reduction over cars, 

although buses havent shown any reduction. Better access to rail stations increased travel 

flows more than BRT stations, with rail users being more sensitive to walking times. The 

findings suggest that combining faster transit with improved station access could boost 

public transit flows and reduce congestion. 
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1. Introduction 

The reduction in travel costs was a noticeable influence of motorized vehicles on 

the spatial structure of urban areas during the XX century (Anas et al., 1998). If the spatial 

distribution of land use attracts both economic activity and the population through 

agglomeration externalities, then urban transport systems are effective in fostering 

proximity (Ahlfeldt et al., 2015; Fujita, Krugman and Venables, 2001; Glaeser et al., 

2001). The side effects of urban agglomeration include congestion costs, which are 

among the main challenges of large metropolitan areas, as they reduce workers’ welfare 

due to more exposure to disamenities such as stressful commutes, likelihood of absence 

to work, and pollution, and have negative effects on worker productivity (Van Ommeren 

and Gutiérrez-I-Puigarnau, 2011; Zenou, 2002; Yriakopoulou and Xepapadeas, 2013). 

The rapid urban demographic growth in Latin America in recent decades has challenged 

the capacity of its cities to provide transport infrastructure (Bryan et al., 2020; Pojani and 

Stead, 2018; Vasconcellos, 2005). The lack of coordination between land use and 

transport infrastructure policies increases these congestion forces in Latin American 

cities, which are worse in large urban areas due to the greater complexity of coordinating 

transport policies between multiple municipalities (Pojani and Stead, 2018). 

A growing body of literature on urban economics uses spatial granulated data in 

gravity-based models to estimate how exogenous schocks on urban structure (e.g., 

transport network, land markets) affect the spatial distribution of travel flows (Ahlfeldt et 

al., 2015; Ahlfeldt and Wendland, 2016; Ahrens and Lyons, 2021; Balboni et al., 2020; 

Dingel and Titelnot, 2020; Tsivanidis, 2023). A more recent use of gravity-based models 

aims to estimate the effects of improvements of the physical access to the public transit 

system on the distribution of urban travel flows (Gaduh et al., 2022). The objective of this 

paper is to contribute to this strand of literature by understanding how the improvement 

on the physical access to the public transit system affects the spatial pattern of travel flows 

in São Paulo metropolitan region (SPMR). The paper draws on the literature of station 

catchment area for the rapid transit modes of rail and BRT to observe incentives for the 

realization of trips between pair of districts of SPMR, which desintangles the incentives 

for travel using its public transport system. The novel empirical approach of this paper 

uses granular spatial information about the street network of SPMR to measure the 

changes on the population and jobs covered by the rapid transit system. It combines these 

measures of station catchment areas with data from Origin-Destination surveys of SPMR 



during the 2007-2017 period in econometric models to estimate whether such 

improvements enhanced gravity effects on bilateral travel flows. 

SPMR is the megacity with the largest population of Americas, in which increases 

in household income in recent decades have led to a sharp increase in the usage of private 

vehicles for travel (Bocarejo, 2020; Carvalho and Pereira, 2013; Vasconcellos, 2005). 

This preference for private vehicles has burdened the transport infrastructure and 

increased the travel times of this metropolitan area in recent decades (Carvalho and 

Pereira, 2013). Evidence shows that it became an economic issue, since each 10 minutes 

spent on commuting reduces the potential earnings in its labor market by -2.7% (Haddad 

et al., 2015). Nevertheless, the promotion of mode-shift behavior in Global South 

megacities is complex. It evolves promoting speed of travel, spatial connectivity, and easy 

access to the transit system (Brooks and Deneoux, 2022; Bocarejo et al., 2020). During 

the period (2007-2017), SPMR has expanded its high-speed transit system through 65 

new train, subway, and BRT stations to incentivize a mode shift from private vehicles to 

public transport.  

However, the geographic area of influence of transit stations on the propensity of 

individuals to travel by public transit transport mode is limited (El-geneidy et al., 2014; 

Vale, 2021; Kamruzzaman, et al., 2014). Their area of influence relate to the 

heterogeneous level of speed according to the public transit mode (e.g., bus, rail, subway) 

(Estupiñan and Rodriguez, 2008; Murray et al., 1998). These qualitative dimentions of 

travel conditions influence on passenger comfort, given that walking time is inherent to 

travel by public transit (Vale, 2021), but this aspect has received little attention among 

urban economists.  

Thus, the contribution of the paper is threefold. First, it makes an empirical 

analysis to understand changes in the relative differences in travel times between different 

transport modes before and after the investiments in the public transport system of SPMR. 

This investigation follows the intuition of Gaduh et al. (2022) to understand if the 

expansion of the rapid transit system promoted relative gains in travel time, and therefore, 

could incentivize changes in travel behavior towards more usage of the public transport. 

Second, the spatial granular information about the streets network that connects 

households, rapid stations and jobs brings a novel approach to understand the relationship 

between station catchment areas and the spatial distribution of travel flows for this 

megacity. The goal of this approach is to compute the influence of the convenience to use 

the rapid transit system. Finally, the paper brings the first evidence about changes on the 



spatial pattern of travel flows of SPMR using a gravity-based spatial interaction model 

approach. This sort of analysis is scarce in developing countries due to the lack of multi-

period spatial granulated data. The spatial interaction models developed on this paper 

allow disentangling the incentives for travel through the transportation system of SPMR 

and can be useful to guide policy implications. 

The remainder of the paper is organized as follows. The next section presents a 

literature review about station catchment areas and gravity commuting models, followed 

by a section that describes the study area and another section that details the data and 

identification strategy used. Then, the last section presents the results of and final remarks 

about the study. 

 

2. Literature review 

Some of the dimensions of the built environment, such as population density, 

street design, and land use mix, determine the attractiveness of the public transport system 

(Cervero and Kockelman, 1997; Handy et al., 2002), which is moderated by local 

socioeconomic conditions (Ewing and Cervero, 2001; 2010). Therefore, the choice of 

residence and work places is governed by the spatial distribution of urban amenities, 

including travel conditions, by which the efficiency of the transit network system 

becomes an incentive for proximity between urban agents.  

The level of speed travel and the comfort promoted through physical access to the 

public transport system are understood as mechanisms for transport mode shift (Brooks 

and Deneoux, 2022; Gaduh, 2022; Estupiñán and Rodriguez, 2008; Murray et al., 1998). 

These aspects contribute to delimit the spatial range from transit stations in which 

potential riders are drawn, defined as station catchment areas. Therefore, the influence 

of public transit stations on the usage of the system presents spatial decay (El-geneidy et 

al., 2014; Kamruzzaman et al., 2014). The utility level that a transport mode provides to 

the passenger also explains travel behavior, as the choice of mode for travel is assumed 

to be governed by a trade-off between his choices and the other available modes and 

routes (McFadden, 1974). On an aggregated geographic level dimension, forces of 

attraction at the origin and destination and the efficiency of the transport network on 

promoting their connectivity can explain the intensity of bilateral travel flows between 

the pair of distinct areas. This sort of bilateral travel flows have been object of study of a 

long strand of literature related to the spatial interaction models (Wilson, 1971; Haynes 

and Fotheringham, 1985; Roy and Thill, 2004).  



Recent literature has collapsed the strategies to identify travel behavior on spatial 

interaction models that predict the probability of interaction between pairs of blocks of a 

city (Ahlfeldt, 2015). This framework assumes that individuals simultaneously choose 

their household and work places based on the urban amenities nearby (e.g., green area at 

household site and productivity at work site) and their level of connectivity through the 

transport network. The indidividual choice is also governed by the idiosyncratic utility 

when he aims to maximize his utility level given his constraints (e.g., monetary budget, 

time available for commuting), the demand and supply of housing at origin and for 

workers at the destination place. Under these assumptions, individuals will choose the 

unique combination of household and work places that will maximize their respective 

utility level. If these land and job markets clear, the spatial equilibrium under the multiple 

demand and supplies for city blocks draw the commuting flows between them. Therefore, 

changes in travel cost could induce the demands for city blocks, both in purposes of living 

and working. 

For example, the empirical analysis of Ahlfeldt et al. (2015) concluded that the 

reunification of western and eastern Berlin reduced the commuting costs and intensified 

the commuting flows between these locations that were formely separated. Their model 

also computes agglomeration economies through the wages and rental prices, which they 

argue that increased at some blocks that benefited from the reduction of commuting costs 

and improvements in production and residential externalities. Tsivanidis (2023) estimates 

the impacts of a BRT expansion in Bogotá on the demand for land and car ownership 

decision with a gravity-commuting model that computes the simultaneous gains in the 

access of firms to workers and residences to jobs through the public transport network. 

This cumulative market access (CMA) detects the agglomeration economies promoted by 

the new BRT network through impacts in land and wage prices in the city blocks treated 

(those who had increases in CMA over the period).   

When well succeeded in terms of reducing tavel costs, the expansion of the transit 

system and the improvement of the access to the new rapid transit stations may affect the 

demand for travel using such transport mode. Under these assumptions, Severen (2021) 

investigated the effects of the proximity to new rail stations on the patterns of commuting 

flows of the Great Los Angeles. He adopts three rules to assign the treatment: 1) by 

observing the census tracts that had received a new rail station; 2) considering an 

euclidean distance of 250 meters between census tracts’ centroids and a new station; and 

3) same as 2) with 500 meters. His models have found positive impacts of the proximity 



to the new rail stations on the number of bilateral commuting flows. The study of Gaduh 

et al. (2022) analyzed the effects of BRT network expansion on the travel flows of Jakarta. 

The authors assigned the treatment to observe the access to the transit system through 

euclidean distances of 1 km between the borders of his unit areas and the BRT stations. 

They found no signiticative impact of better access to BRT stations on the probability of 

bilateral travel flows. This result is justified due to the lack of gains of relative speed of 

travel through the BRT network when compared to private vehicles, given the insuficient 

investment in infrastructure from this policy. However, these simple measures of distance 

of Severen (2021) and Gaduh (2022) do not account for the streets’ design and 

overestimates the real conditions required to reach the transit network system (El-geneidy 

et al., 2014). 

Numerous empirical studies have shown the relationship between the catchment 

area of the transit system and the walking distance to its stations. The longer is the walking 

distance to the transit station, the lower the percentage of residents that use it (El-geneidy 

et al., 2014; García-Palomares et al., 2018; Murray et al., 1998). Because of this 

relationship, the circuity factor (a measurement of the amount of a street network that fits 

into a radius format) and the level of connectivity of the sidewalk network are built 

environment dimensions that influence the catchment of each transit station with spatial 

refinement (Hsio et al., 1997; O’sulliavan et al., 1997; Kamruzzaman et al., 2014). The 

walking distance that individuals tolerate to use the transit system tends to be longer for 

rail users and shorter for bus users (Burke and Brown, 2007; Daniels and Mulley, 2013; 

O’sullivan et al., 1997; El-geneidy et al., 2014). This spatial heterogeneity in the influence 

of the station catchment area is also a consequence of the relationship between the speed 

of travel offered by different public transport modes and the incentive to use the public 

transport system. 

Wheather the distance from the origin and destiny to the transit station is enough 

to encourage the use of the public transport system, there are incentives that prevent the 

use of private motorized transports. However, transport infrastructure is typically 

restricted to serve only part of populations in cities of developing countries because their 

institutional development rarely had the capacity to follow the demand derived from 

urbanization growth (Bryan et al., 2020; Pojani and Stead, 2018). Considering the 

relevance of land use within the built environment dimensions that influence commuting 

behavior, an increase in population density near transit systems can regional accessibility 

(Pojani and Stead, 2018; Venter et al., 2019). Furthermore, the land use policies that 



foment this transit-oriented densification in developing countries should focus on middle-

poor income populations since they face more restrictions to better levels of accessibility 

due to the spatial distribution of intrastructure (Boisjoly et al., 2020; Venter et al., 2019; 

Vasconcellos, 2017).  

 

3. The study area 

With 22 million inhabitants, São Paulo metropolitan region is the largest urban 

agglomeration in American continent, in which approximately 19% of the Brazilian GDP 

is concentrated (IBGE, 2021). The rapid population growth of SPMR in recent decades 

has increased the economic pressure in the residential market, has burdened its population 

with housing and transportation costs, and led this region to reach the second highest 

living cost in Brazil (Acolin and Green, 2017; Almeida and Azzoni, 2016). Figures 1 and 

2 show that although population is significantly dispersed throughough SPMR, there is a 

concentric spatial distribution of jobs towards São Paulo city. The spatial dispersion of 

population towards peripheral areas of SPMR challenges the provision of transport 

infrastructure for commuting, and inhabitants of its peripheral areas have significantly 

lower levels of accessibility to job opportunities (Boisjoly et al., 2020; Gianotti et al., 

2021; Vieira and Haddad, 2015). 

 

 



Figure 1 – Population density in São Paulo Metropolitan Region (2010) 

Source: author’s own, from Brazilian census of 2010. 

 

 

Figure 2 – Job density in São Paulo Metropolitan Region (2010) 

Source: author’s own, from the Annual Social Information Report of 2010. 

 

In this context of challenges in the transport infrastructure, 65 new rapid transit 

stations were built in the SPMR between 2007 and 2017. Figure 3 shows that by 2017, 

the subway system expanded from the central region to the western region of São Paulo 

city on the yellow line, toward the eastern region by the green line, and from the 

southwestern region to the central-southern zone through the purple line. The rail system 

expanded its existing network system in the city of São Paulo toward its eastern and 

southern regions and from São Paulo’s northeast to the city of Guarulhos. These new rail 

lines totaled 30 km of expansion in 10 years.  

 



 

Figure 3 – The rapid transit system of the SPMR in 2017. 

Source: Author’s own elaboration, from OSM and IDTP data. 

 

Figure 3 also shows that there was 26 km of expansion for the BRT network from 

the south region to the southwest region of the city of São Paulo and a new corridor 

opened in the city of Guarulhos. Besides that, the administration of the city of São Paulo 

launched the “single fare” rule in 2005 (Rolnik and Klintowitz, 2011). This new fare rule 

allowed the use of the whole public transport system (buses, subway and rails) after 

paying one single fare that was lower than the fares that one would pay to take each public 

transport mode singly (São Paulo, 2008; Sptrans, 2013). In 2014, this fare rule was 

expanded to the remaining municipalities of the metropolitan region, along with a 

monthly plan fare (Santiago, 2013). Therefore, the effects of these incentives to use the 

public transport system in SPMR must be assessed with the aims to . 

 

4. Material and methods 

4.1 Data 

This study uses pseudo panel data of SPMR about travel, income, population and 

public transit station networks. The travel, household, and work place information are 

drawn from household travel surveys (Origin-Destination) conducted in SPMR in the 



years of 2007 and 2017 (Metro, 2007; 2017). These OD surveys are sampled considering 

geographic zones and districts that are based on census tracts. Household OD information 

is available in point coordinates. The OD information was used to quantify the number 

and duration of commuting trips between districts by transport mode. The spatial structure 

of the database consists of the OD districts. Data from OpenStreetMap (OSM) was also 

used to obtain information about the street network of the SPMR, which is a cross 

sectional data for the year of 2023. Because of that, we hold on the assumption that the 

street’s network havent had significative changes between 2007 and 2017. The data of 

rapid transit stations is from MOBILIDADOS2, which provides information of 

coordinates of the station, mode type, as well as date of inauguration and closure. 

The street network data from the OSM was used to calculate the shortest route by 

walking from the centroid of the location of each household to every rapid transit station 

using the r5r package in R, developed by Pereira et al. (2022). I adopt an average walking 

speed of 3.6 km/h, following Fitzpatric and Brewer (2006), to build this travel time 

matrix. The study computed different walking time thresholds to reach the rapid transit 

stations (10, 20 and 30 minutes) considering their spatial distribution for each year (2007 

and 2017). The combinations between these walking time information and the spatial 

distribution of rapid transit stations allows observe the changes of the percentage of 

population and jobs that were covered by the rapid transit system at each district on the 

OD surveys of 2007 and 2017.  

The descriptive statistics for the OD surveys data by transport mode are presented 

on Table 1. It shows that the mean commuting times decreased for bus, car and rail users, 

as well as the mean commuting distances. The mean euclidean distance from the 

household location to the closest BRT station also decreased for all of the transport 

modes, which relates to its network expansion. Although the mean household euclidean 

distance from household to the rail network (Train or subway) remained stable for bus 

users, it increased for car users and decreased for rail users. The data in table 1 is also 

suggestive of sorting for access to high speed modes, by which the car users have the 

higher household incomes, followed by rail users and then by bus users. 

 

Table 1 – Descriptive statistics. 

Commuting transport 
mode 

Bus   Car Rail 

                                                           
2 https://mobilidados.org.br/rms/rmsp. 



Year 2007 2017 2007 2017 2007 2017 

Variable Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Commuting time 
(Minutes) 

53 31 44 25 30 26 26 21 47 28 43 22 

Commuting Euclidean 
Distance (meters) 

6,356 5,609 5,201 4,508 5,551 6,241 5,438 6,278 7,746 6,735 6,727 5,556 

Euclidean Distance to 
the nearest BRT station 
(meters) 

10,669 9,055 8,399 8,140 7,811 7,122 7,198 7,456 6,214 6,233 4,657 4,421 

Linear Distance to the 
nearest Rail station 
(meters) 

4,848 5,144 4,752 5,068 3,215 3,812 3,769 4,521 1,922 2,901 1,460 1,827 

Household Income (R$) 2,534 2,254 3,946 3,368 5,777 4,575 7,833 6,863 3,738 3,127 6,293 5,378 

Male 0.44 0.5 0.41 0.49 0.54 0.5 0.54 0.5 0.5 0.5 0.51 0.5 

Age 36 17 39 19 40 18 43 19 37 17 40 17 

Cars per household 0.6 0.74 0.55 0.65 1.6 0.93 1.4 0.77 0.78 0.82 0.72 0.73 

 
Educational level: 

                    
  

Illiterate 9%  9%   8%   10%   3%   2%  

Primary school 17%  12%   9%   7%   8%   3%   

Elementary school 19%  18%   9%   7%   13%   7%  

High school 42%  44%   29%   29%   44%   40%   

Bachelor degree 12%  18%   45%   47%   32%   48%   

Number of observations 
 
% of total trips 

25,343 
 
21.19 

20,837 
 
25.77 

67,578 
 
68,73 

53,551 
 
54.46 

5,407 
 

5.5  

4,916 
 
    5 

Source: Author’s own elaboration, from the OD surveys of SPMR of 2007 and 2017. 

Notes: Individuals who used more than one transport mode are not considered on these 

statistics. Commuting transport mode is based on the only transport mode declared by the 

individual on the survey. Household income are in nominal values. 

 

4.2 Econometric models 

Linear models to estimate differences in travel times between transport modes 

 

Following Gaduh et al. (2022), we used OLS models to estimate how the 

differences of travel times between different public transport modes and private vehicles 

(cars) in SPMR changed over the period of the analysis (2007-2017). 

 

𝑙𝑛𝑇𝑖𝑚𝑒𝑖 = 𝛽0 + 𝛽1𝑃𝑇𝑖 + 𝛽2𝑋𝑖 +  𝜀𝑖𝑗                                                                              (1) 

Where Time is the travel time for individual i. The sample is restricted for public transport 

and car trips, and PT is a dummy variable for individuals who used a public transportation 

mode. The analysis used different regression models to compare cars with PT: bus, rail 

(subway and train) and the aggregated public transport modes. X is a set of control 

variables: log of linear distance, hour departing time, weekday, origin zone, destination 

zone, travel purpose, and interaction dummy between hour and weekday. Moreover, 𝜀 are 

robust standart errors clustered by an interaction between the origin and destination zones. 



We also followed the framweork of Gaduh et al., (2022) to compare the travel time of 

potential BRT users with other modes: bus, rail and cars. It consists of assigning a dummy 

variable in equation (1) as BRT user for individuals who commuted by bus and lived 

within a radious distance of 1 km from a BRT station. The aim of these models is to 

estimate if the public transport modes had reduced their relative difference of travel time 

compared to cars in the years of 2007 and 2017, which could be related to the transport 

policies of SPMR for the period. 

 

Gravity model to estimate incentives and desincentives for travel by public transport 

This study used poisson models to estimate the relationship between the 

percentage of districit’s population and jobs within rapid stations’ catchment areas and 

the distribution of travel flows. The models follow the framework proposed by Ahlfeldt 

et al. (2015) and Gaduh et al. (2022) to estimate spatial interaction for intraurban areas 

based on economic incentives. It assumes that the observed quantity of bilateral travel 

flows from home to the destiny place (with the purposes to work or study) reflects a 

spatial equlibrium determined by demands and supplies of amenities located in the 

districts. The probability of bilateral travel flows drawn from this equilibrium is: 

 

𝜋𝑖𝑗 =
∑ 𝑊𝑖𝑗

𝑛
𝑖=1

∑ 𝑊𝑖
𝑛
𝑖=1

                                                                                                        

(2) 

where 𝜋 is the probability of interaction between the district of origin i and destination j 

explained by the numer of residents W in i who traveled to j. The sample is restricted to 

individuals who traveled by public transport to work or study. The variable 𝜋 is balanced 

by push and pull factors, such as the amount and quality of opportunities in i and j, which 

will determine the gravity forces for travel. The transport network plays a role on these 

gravity forces by intermediating their spatial connectivity, in which the travel cost reduces 

the utility level achieveble through the interaction between i and j. To explore the 

dimensions of the (dis)incentives for bilateral travels, we extend the framework of 

Ahlfeldt et al. (2015) and Gaduh et al. (2022) by using station catchment areas as a 

measure of access to the transit system. The reduced form of the poisson models follow: 

 



𝑙𝑛𝜋𝑖𝑗𝑡 = 𝛽0 + 𝛽1(%𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑖𝑡 ∗ %𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑗𝑡)+ 𝛽2𝑙𝑛𝑇𝑖𝑚𝑒𝑖𝑗𝑡 + 𝛿𝑖 + 𝛾𝑗 + 𝜑𝑖𝑡 + 𝜐𝑗𝑡 +

𝑇𝑡 +  𝜀𝑖𝑗   

(3) 

where the ln of the probability of travel between the origin and the destination districts at 

year t is explained by %Covered, the percentage of population and jobs within the 

catchment area of transit stations in that year at origin and destination. Thus, the 

interaction between %𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑖𝑡 (origin) and %𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑗𝑡  (destination) is a continuous 

variable for the change in population and jobs covered for the districts at the origin and 

destination over the years 2007 and 2017. Time is the average travel time by public transit 

between i and j. Moreover, 𝛿 and 𝛾 are fixed effects for the origin and destination, 

respectively, as well as 𝜑, 𝜐, and T are time-origin, time-destination and time-year fixed 

effects, respectively, and 𝜀 is an origin and destination clustered error term. Therefore, 

because %𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑖𝑡 ∗ %𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑗𝑡 is time variant over the period (2007-20017), 𝛽1 in 

equation (3) estimates how the increases in the proportion of population and jobs covered 

by the rapid transit stations affected the distribution of bilateral travel flows of SPMR.  

This strategy follows the same intuition of Gaduh et al., (2022), which used the 

distance from the boarders of each district’s polygon to BRT stations to calculate their 

measure of access to the transit system. However, the measure of access used here has 

two advantages: 1) the use of latitude and longitude coordinates of households and job or 

study locations. It brings more geographic precision about the starting and ending points 

of the travel; 2) the use the walking distances along the transport network, which is more 

precise and realistic than euclidean distances and is better able to capture the influence of 

urban form on walking access to the transit system. Moreover, the approach allows us to 

estimate the spatial decay of the station catchment given varying walking times. Finally, 

equation (3) estimates both the incentives through the ease of access to the transit system 

and the disincentives for longer travels, which allows us observing the two sides of the 

coins of the travel through public transport (Vale, 2021). 

 

5. Results 

5.1 Relative differences in travel time between transport modes 

The results through the differences in travel time between the public and private 

transport system were analyzed, as we assume it is a potential mechanism for changes in 



commuting behavior. Figure 4 shows the average difference between travel times by 

public transport (bus and heavy rail) and private (car) by income quintile. It suggests that 

the median travel time difference between these transport modes (travel time by Public 

transport minus travel time by car) had only reduced slightly for the third quintile and 

increased slightly in the fourth quintile. Although there were decreases in the average 

travel times of each transport mode at each income quintile (METRO, 2017), it seem that 

when we compare travel time between public transport and cars, these relative differences 

in time were stable from 2007 to 2017. To better understand this, formal tests were run in 

linear regression analyzes, with the aim to estimate such relative differences in travel time 

between public and private transport. 

 

 

Figure 4 – Box plots for average difference in travel time between public and private 

transport travels by income quintile. 

Source: Author’s own, from Origin Destination surveys of SPMR of 2007 and 2017. 

 

The results of the OLS regressions that test the differences in travel times between 

public transport and cars are reported in Table 2. The coefficients in columns (1-2) 

suggest a slight increase on the relative differences of travel times between buses and cars 

of 1.7% percentage point over the years of 2007 and 2017. In the year 2007, the mean 

travel time by bus was 57% higher than by cars, and 59% in the year 2017. In an opposite 

trend, the relative difference in travel time between rail (subway + train) and cars in 

columns (3-4) had decrease from the year 2007 to the year 2017 in -3.9% percentage 

points. It suggests some improvement in the efficiency of the rail service relative to cars 



through the SPMR, thus, travels made through the heavy rail system reduced its relative 

costs in terms of time of travel in comparison with travels made by car.  

Overall, the results of the columns (5-6) in table 2 evidence that the aggregated 

travels through the public transport (bus and rail) improved only slightly its relative travel 

time in comparison to cars. In fact, the better results for the rail transport system shown 

in columns (3-4) are expected due to the higher magnitude of investment in the expansion 

of the rail than of the buses infrastructures in the study area. Although there was an 

expansion in the RMSP of 26 km in new BRT corridors during the 10 year period, it seem 

that such new infrastructure still did not generate reasonable gains of speed of 

commutation to compete with the speed of travels made by cars.  

 

Table 2 – OLS models for the estimates of the differences of time travel between public 

and private transport. 

    

   Model 

2007 

 (1) 

2017 

 (2) 

2007 

 (3) 

2017 

 (4) 

2007 

 (5) 

2017 

 (6) 

Bus x Car 0.576*** 0.593***     

 
(0.0123) (0.0059)     

Rail x Car   

 

0.321*** 0.282***   

 
  (0.0216) (0.0128)   

PT (all) x 

Car 
  

  

0.542*** 

(0.0104) 

0.516*** 

(0.0058) 

   
    

Adjusted 

R2 

Sample (N) 

   0.59 

73,305 

 0.78 

74,391 

   0.58 

53,392 

0.78 

58,468 

0.59 

106,178 

0.79 

100,672 

Notes: This table reports linear regression models that have the log of  individual travel 

time as dependent variable. Each model has a dummy variable indicating a travel made 

by a public transport mode, compared with travels made by car. The additional controls 

in the regressions are: log of linear distance and dummies of hour time, week day, 

interaction dummy of hour and week day, origin zone, destination zone, and travel 

purpose. Robust standard errors, clustered by an interaction of origin and destination 



zones, are reported in parentheses. * / ** / *** denotes significant at the 10% / 5% / 1%, 

respectively. 

 

Further investigation about the performance of BRT lines in comparison to other 

transport modes for the RMSP following similar approach of Gaduh et al., (2022) was 

made and presented on Table 3. It is assumed that travels by bus that started and ended 

within the distance of 1 km from BRT stations were made by the BRT mode. The results 

show statistical difference for the difference in travel time between BRT and bus in the 

year 2007, although it changed in the year 2017. Thus, Table 3 shows a marginal 

difference of -7.5% on the time travel between BRT and buses for the year 2007, and no 

statistical difference between the travel time of bus and BRT commuters for the year 

2017. However, the columns (3-4) suggest that the higher times of BRT travels in 

comparison with cars had a marginal increase in percentage points of 5.4%. In the 

comparison between the BRT with the rail system (train and subway), columns (5-6) in 

Table 3 show that there was a difference in travel time of 25% between BRT and rail 

commuters for the year 2007. However, Table 3 shows a significative reduction on that 

difference in travel times between BRT and Rail commuters for the year 2017, in which 

I found a reduction of -9.4% percentage points in comparison to the year 2007.  

 

Table 3 – OLS models for the estimates of the differences of time travel between BRT 

buses and other transport modes. 

    

Model 

2007 

 (1) 

2017 

 (2) 

2007 

 (3) 

2017 

 (4) 

2007 

 (5) 

2017 

 (6) 

BRT x Bus 

-

0.075** -0.0006     

 
(0.0295) (0.0193)     

 

BRT x Car   0.530***  0.584***   

 
  (0.0294) (0.0172)   

BRT x Rail 
    

  

 

 

0.255*** 

 

0.161*** 



     (0.0405) (0.0236) 

       

Adjusted 

R2 

Sample (N) 

   0.49 

25,309 

 0.61 

20,839 

   0.58 

49,396 

    0.78 

55,463 

0.64 

6,796 

0.70 

6,827 

Notes: BRT commuters were defined as the individuals who commuted by bus and lived 

within a distance of 1 kilometer of a BRT station. The dependent variable is the log of 

individual travel time. The additional controls in the regressions are: log of linear distance 

and dummies of hour time, week day, interaction dummy of hour and week day, origin 

zone, destination zone, and travel purpose. Robust standard errors, clustered by an 

interaction of origin and destination zones, are reported in parentheses. * / ** / *** 

denotes significant at the 10% / 5% / 1%, respectively. 

 

Even after the expansion of the rapid transit network between the years 2007 and 

2017, there are still many areas in the SPMR without quick access to the rapid transit 

network. According to Mobilidados (2023), only 12% of the total population of SPMR 

lived within 1 kilometer from a rapid transit station in the year 2017. However, that 

percentage increases to 31% for those on the highest income quintile, and decreases to 

10% on the lowest income quintile. This spatial concentration of improvement of rapid 

transit infrastructure relates to the reductions in the relative travel time in the rail system 

shown in the results in Figure 3, in which it is possible to observe a very punctual 

reduction of relative mean travel time for the third income quintile. Given that the subway 

system had the better improvements in commute times in comparison to cars and that the 

new subway lines are mostly located in areas with middle-higher income population, it is 

possible to affirm that this population was the most benefited by the improvements in 

speed through the public transport. 

 

 

5.2 Results for gravity commuting in the SPMR 

In this section, the results of the models following equation 3 are presented using 

different specifications to observe how the consideration of different variables to observe 

the commuting costs affect the results. Table 4 for reports the poisson models with the 

coefficients for the variable that measure the station catchment areas for BRT mode. It 

shows that each 10 percentage increase on the number of residences or jobs covered 

Comentado [RP1]: para testar se os resultados são sensiveis 
quando se considera catchment area de diferentes tamanhos. 
Alias, essa decisão de fazer analise de sensiilidade para 

tamanho da catchment area tinha q ter sido explicada / 
justificada na secao de metodos 



within 10 minutes from a BRT station increases the probability of commuting between 

the pair of districts in 1.08%. This positive relationship decreases to 0.2% when 

considering a walking time threshold of 20 minutes, and to 0.1% for a longer threshold 

of 30 minutes.  

 

Table 4 - Gravity models with station catchment areas for BRT stations 

Dependent Var.: 
Log prob of commuting 

 

Walk time to/from nearest station 10 minutes 20 minutes 30 minutes 

%ResCovBRT xJobsCovBRT 

 

0.0108***  

(0.0032) 

 

0.0020***  

(0.0004) 

 

0.0010***  

(0.0002) 

Log of travel time 

 

-1.679***  

(0.1616) 

-1.662***  

(0.1592) 

-1.650***  

(0.1560) 

Fixed-Effects:   

Origin Yes Yes Yes 

Destination Yes Yes Yes 

Origin & year Yes Yes Yes 

Destination & year Yes Yes Yes 

Year Yes Yes Yes 

S.E.: Clustered 
Origin & Desti

ny 

Origin & Desti

ny 

Origin & Desti

ny 

Observations 3,508 3,508 3,508 

Squared Cor. 0.48091 0.49295 0.49589 

Pseudo R2 0.09210 0.09351 0.09398 

BIC 7,133.9 7,133.0 7,132.7 

Source: author’s own. 

Notes: “%ResCovBRT” and “%JobsCovBRT” are the percentages of residences and the 

percentage of jobs within the station catchment areas of BRT, respectively. These 

variables follow the explanation given in equation (3). 

 

This relationship of lower effects of access to transit stations on travel flows as 

we adopt larger threshold of walking time in the models of Table 4 is expected, since the 

increase in walk time to reach a station increases the disutility and reflects a disincentive 

to use to public transit system. The travel time is the other component of commuting cost. 



Its coefficients are also reported in the models of Table 4 and show a negative relationship 

with the probability of commuting flows between pairs of districts. Given the 

specification in equation 2, these coefficients for travel time can be interpreted as 

elasticities. They are significantly higher than Ahfeldt et al. (2015), which found -0.07 

for Berlin, and Gaduh et al. (2022), with -0.059 for Jakarta. Either the coefficients for the 

access to transit station and the elasticities of travel time are very marginally sensible to 

the inclusion of one of them in the model. 

The models for the effects of rail stations (subway and trains) on the commuting 

flows through the rapid transit system are reported in Table 5. They show that the effects 

of these transit modes are much higher in the threshold of 10 minutes walk than of BRT 

stations, and therefore, at each increase of 10% of jobs or population covered, the 

probability of commuting between pairs of districts increase by 2.1%. However, the decay 

effect of walking time to a rail station on the probability of commuting is stronger than to 

BRT stations. Finally, the travel elasticities on commuting flows do not differ 

significantly for the estimates of the models on Table 4. This is expected because all the 

models have the same sample, and the differences are on which kind of rapid transit 

station affect the commuting flows for the aggregated rapid transit system. 

 

 

 

Table 5 – Gravity models with station catchment areas for Rail stations 

Dependent Var: 
Log prob of commuting 

 

Walk time to/from nearest 

station 
10 minutes 20 minutes 30 minutes 

 

%ResCov Rail x %JobsCov 

Rail 

 

 

0.0219** 

(0.0067) 

 

0.0016*** 

(0.0003) 

 

0.0009*** 

(8.99e-5) 

Log travel time 
-1.673*** 

(0.1610) 

-1.609*** 

(0.1605) 

-1.579*** 

(0.1602) 

Fixed-Effects:    

Origin Yes Yes Yes 



Destiny Yes Yes Yes 

Origem & year Yes Yes Yes 

Destiny & year Yes Yes Yes 

Year Yes Yes Yes 

S.E.: Clustered Origin & Destiny Origin & Destiny Origin & Destiny 

Observations 3,508 3,508 3,508 

Squared Cor. 0.47493 0.47870 0.49535 

Pseudo R2 0.09184 0.09261 0.09492 

BIC 7,134.0 7,133.5 7,132.1 

Source: Author’s own. 

Notes: “%ResCovRail” and “%JobsCovRail” are the percentages of residences and the 

percentage of jobs within the station catchment areas of rail, respectively. These variables 

follow the explanation given in equation (3). 

 

These results dialogue with the literature of station catchment areas and with what 

the data shows about the users of the transit system and the differences in travel time 

between transit modes and cars. Since the rail system is more efficient on promoting speed 

than the bus system, the users are more sensible to the distance from a rail station than a 

BRT station when they decide to use the transit system or not. Also, given that the income 

level of those who used the rail system was between 47% (in 2007) and 59% (in 2017) 

higher than those who commuted by bus, it is also expected that the rail transit users are 

less propense to walk longer distances to reach the transit system than BRT users. 

A further step of the analysis, models the influence of rail and BRT stations 

together. This is a sensitivity analysis, given that every gravity model shown at this study 

consider both commuting trips made by rail or bus3. However, Table 6 shows that the 

inclusion of both variables that measure the level of coverage of BRT and rail stations in 

the same models don’t change their magnitudes neither standard error significantly. This 

is an indicative that there might not be high collinearity between the variables in the 

models. 

 

Table 6 – Gravity models with station catchment areas for BRT and Rail 

Dependent Variable: Log prob of commuting 

                                                           
3 Considering only rail or bus on the gravity models result in small sample, which reduces the reliability of 

the estimates. 



Walk time to/from nearest 

station 
10 minutes 20 minutes 30 minutes 

%ResCovBRT x %JobsCovBRT 

 

0.0108*** 

(0.0032) 

0.0020*** 

(0.0004) 

0.0009*** 

(0.0002) 

%ResCovRail x %JobsCovRail 

 

0.0217*** 

(0.0065) 

0.0015*** 

(0.0003) 

0.0009*** 

(8.48e-5) 

Log travel time 

 

-1.667*** 

(0.1601) 

-1.583*** 

(0.1570) 

-1.542*** 

(0.1535) 

Fixed-Effects:    

Origin Yes Yes Yes 

Destiny Yes Yes Yes 

Origin&year Yes Yes Yes 

Destiny&year Yes Yes Yes 

Year Yes Yes Yes 

S.E.: Clustered Origin & Destin 
Origin & Desti

n 

Origin & Desti

n 

Observations 3,508 3,508 3,508 

Squared Cor. 0.48873 0.50443 0.52332 

Pseudo R2 0.09360 0.09574 0.09838 

BIC 7,141.1 7,139.7 7,138.1 
 

Source: Author’s own. 

Notes: “%ResCov” and “%JobsCov” are the percentages of residences and the percentage 

of jobs within the station catchment areas, respectively. These variables follow the 

explanation given in equation (3). 

 

Therefore, the ranking in the magnitudes of the effects of access to the transit 

stations remains: rail stations have stronger positive effects on gravity commuting flows 

than BRT stations within the 10 minutes threshold, but weaker effects from the 20 minutes 

threshold. The coefficients that change at most on the models of Table 6 are the elasticities 

of travel time on the model of 20 minutes of walk threshold from or to the nearest station, 

which reduce from the range of -1.6 to -1.58. Therefore, all of the models suggest that the 

sensitivity to commute relative to the travel time tends to reduce for those who are further 

from a rapid transit station, which may reflect a lack of options to commute. 

Regarding the specifications of my gravity models, they show some very 

important features to control for unobserved effects and sample noise. The first is the use 



of 5 fixed effects at district and time level. In particular, the interactions between origin 

& year and destiny & year aim to control for changes such as population or job increases 

between 2007 and 2017, which may have occurred because of the new zoning rules in 

São Paulo city (see section 3). The sample noise was treated by only considering those 

bilateral commuting that had at least 10 occurrences in the raw sample. This is a common 

procedure on the literature of gravity models for urban areas (Ahfeldt et al., 2015; 

Ahlfeldt and Wendland, 2016; Gaduh et al., 2022), given that small sample representing 

bilateral commuting trips may reduce the precision of these kind of estimates (Dingel and 

Titelnot, 2020). In fact, then the models were estimated with the total sample, the squared 

correlation is smaller than when restricting the number of bilateral commutings. 

Finally, a model with all of the possible interactions between the available 

information about commuting costs was implemented as an exercise in Table 7. The 

intuition behind such strategy is to estimate how the interaction between the station 

catchment areas and the travel time affect the probability of bilateral commuting, by 

checking if these specifications could better measure the decisions of individuals to 

commute.  

The models in Table 7 suggest the same ranking in magnitude for the rail and BRT 

station coverages on the commuting flows of the models without interaction between 

station coverage and travel time. The new information here is that the interaction between 

station coverage level on residences and jobs and the travel time results in negative 

coefficients. Although negative, these new coefficients with interaction have lower 

magnitude than the coefficients for the coverage level of BRT and rail stations, as well as 

the elasticities of travel time. It seems to be a compensating adjustment, given that an 

increase in the value of the variable that measure the coverage level of stations decreases 

the probability of commuting flows when interacting with the travel time. Also notice that 

the interaction variable of station coverage and travel time in the model with threshold of 

20 minutes of walk from or to the stations is not statistically significant. Therefore, the 

interpretation of such interactive coefficients between the level of coverage of stations 

and travel times needs further insights. 

 

Table 7 – Gravity models with interactions station catchment areas and travel time 

Dependent Var:                                     Log of prob commuting 

  10 minutes 20 minutes 30 minutes 



%ResCovBRT x %JobsCovBRT  

0.0325***  

(0.0090) 

 

0.0049***  

(0.0014) 

 

0.0018***  

(0.0005) 

%ResCovRail x %JobsCovRail 

 

0.0944*  

(0.0442) 

 

0.0020* 

 (0.0012) 

 

0.0017*** 

 (0.0004) 

%ResCov 

BRT x %JobsCovBRT x log 

travel time 

 

-0.0068***  

(0.0020) 

 

-0.0009*  

(0.0004) 

 

-0.0003*  

(0.0002) 

%ResCovRail x %JobsCovRail 

x log travel time 

 

-0.0221*  

(0.0118) 

 

-0.0002  

(0.0004) 

 

-0.0002*  

(0.0001) 

Log travel time 

 

-1.622***  

(0.1678) 

 

-1.543***  

(0.1701) 

 

-1.438***  

(0.1792) 

Fixed-Effects:    

Origin Yes Yes Yes 

Destiny Yes Yes Yes 

Origin & year Yes Yes Yes 

Destiny & year Yes Yes Yes 

Year Yes Yes Yes 

    

S.E.: Clustered Origin & Destiny Origin & Destiny Origin & Destiny 

Observations 3,508 3,508 3,508 

Squared Cor. 0.49205 0.50626 0.52581 

Pseudo R2 0.09391 0.09599 0.09889 

BIC 7,157.2 7,155.9 7,154.1 

    
Source: Author’s own. 

 

 

6. Final remarks 

This study aims to understand the effects of changes on the rapid transit network 

on the commuting behavior for the São Paulo Metropolitan Region between the years of 



2007-2017. The empirical approach was based on the gravity commuting and station 

catchment area literatures, in the aims to observe changes on incentives and disincentives 

for commuting through public transportation within SPMR using longitudinal data in high 

spatial resolution. The exploratory results, shows no changes in the average relative 

difference on commuting times between buses and cars but decreases of 3.9% for the 

heavy rail system of SPMR (trains and subways). The analysis for the commuting flows 

suggests that the coverage level of rail stations are more attractive for commuters than 

BRT stations, which might relate to the better capacity that the first must promote speed. 

The exercise of flexing the walk time to or from the stations of my models are accordingly 

to the literature of station catchment areas, and suggest that rail stations have a stronger 

decay than BRT users. 

The approach released on this empirical essay aims to further understand how 

different components of the travel by public transit can incentivize individuals to use the 

system. The main contribution is to conciliate an approach from the urban planning 

literature (station catchment areas) with an approach of urban economics literature (urban 

gravity models) with the aims to disentangle the incentives for commuting flows within 

the SPMR. The models suggest that the commuting time is only one aspect of the 

decision. Further investigations could use the approach developed in this essay to guide 

public policies about the implementation of transit stations by using counterfactual 

analysis, with the aims to estimate how different locations would use the public transit 

given the proximity to new transit stations. 
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